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Buckling of a Circular Plate
Resting Over an Elastic
Foundation in Simple Shear Flow
The elastic instability of a circular plate adhering to an elastic foundation modeling the
exposed surface of a biological cell resting on the cell interior is considered. Plate
buckling occurs under the action of a uniform body force due to an overpassing simple
shear flow distributed over the plate cross section. The problem is formulated in terms of
the linear von Kármán plate bending equation incorporating the body force and the
elastic foundation spring constant, subject to clamped boundary conditions around the
rim. The coupling of the plate to the substrate delays the onset of the buckling instability
and may have a strong effect on the shape of the bending eigenmodes. Contrary to the
case of uniform compression, as the shear stress of the overpassing shear flow increases,
the plate always first buckles in the left-to-right symmetric mode.
�DOI: 10.1115/1.2937137�
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Introduction
The elastic instability of beams and plates is of prime interest in
ainstream engineering design where critical conditions for struc-

ural stability under a compressive edge load must be established.
nalytical and numerical results are available in the classical me-

hanics and applied engineering literature for plates with various
hapes and a variety of boundary conditions �e.g., see Refs. �1,2��.
he buckling of beams and plates with rectangular and circular
hapes adhering to an elastic foundation has been studied by ana-
ytical and numerical methods on several occasions. Recently,

ang �3� studied the nonaxisymmetric buckling of a Kirchhoff
late resting on a Winkler foundation, provided analytical solu-
ions for the eigenfunctions, and identified the most unstable
uckling mode.

In this paper, we consider the buckling of a plate resting on an
lastic foundation under a distributed tangential body force. Mo-
ivation is provided by the possible buckling of the membrane of
n endothelium or cultured cell adhering to a substrate under the
nfluence of an overpassing shear flow. In the physical model, the

embrane is a composite medium consisting of the bilayer and
he cytoskeleton, tethered to the cell interior by macromolecules
hat resist deflection and introduce an elastic response. Fung and
iu �4� discussed the mechanics of the endothelium and proposed

hat the main effect of an overpassing shear flow is to generate
ensions over the exposed part of the cell membrane, while the
ell interior is virtually unstressed. In an idealized depiction, the
xposed membrane is a thin elastic patch anchored around its
dges on the endothelium wall and connected to the basal lamina
y sidewalls. In the present model, we also account for the elastic
oupling between the cell membrane and the cell interior. Luo and
ozrikidis �5� considered the problem in the absence of the elastic
ubstrate and uncovered the spectrum of eigenvalues correspond-
ng to symmetric and antisymmetric deflection modes. Subse-
uently, Luo and Pozrikidis �6� investigated the effect of prestress
ith the goal of evaluating the buckling of the rotating capsule
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membrane. The present formulation extends these analyses and
delineates critical conditions in the particular context of mem-
brane mechanics and in the broader context of elastic stability
pertinent to flow-structure interaction.

2 Theoretical Model
We consider a circular membrane patch modeled as an elastic

plate flush mounted on a plane wall with the edge clamped around
the rim �Fig. 1.� The upper surface of the membrane is exposed to
an overpassing shear flow along the x axis with velocity ux=Gz,
where G is the shear rate and the z axis is normal to the wall. The
lower surface of the membrane adheres to an elastic medium mod-
eled as an elastic foundation.

The shear flow imparts to the upper surface of the membrane a
uniform hydrodynamic shear stress, �=�G, where � is the fluid
viscosity. In the context of thin-shell theory for a zero thickness
membrane, the shear stress can be smeared from the upper surface
into the cross section of the membrane. When this is done, the
shear stress effectively amounts to an in-plane body force uni-
formly distributed over the cross section with components

bx =
�

h
=

�G

h
, by = 0 �1�

where h is the membrane thickness.
We assume that the in-plane stresses developing due to the

in-plane deformation in the absence of buckling, �ij, are related to
the in-plane strains �ij by the linear constitutive equation

��xx

�yy

�xy
� =

E

1 − �2�1 � 0

� 1 0

0 0 1 − �
� · ��xx

�yy

�xy
� �2�

where

�kl =
1

2
� �vk

�xl
+

�vl

�xk
� �3�

�vx ,vy� is the tangential displacement of membrane point particles
in the xy plane, E is the membrane modulus of elasticity, and � is
the Poisson ratio. Force equilibrium requires the differential

balances
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��xx

�x
+

��yx

�y
+ bx = 0,

��xy

�x
+

��yy

�y
+ by = 0 �4�

ubject to the boundary conditions vx=0 and vy =0 around the
lamped rim of the plate. For a circular plate of radius a, we
btain the simplified expressions

vx =
�

Eh

1 − �2

3 − �
�a2 − x2 − y2�, vy = 0 �5�

nd associated stresses

�xx = −
2

3 − �

�

h
x, �xy = −

1 − �

3 − �

�

h
y, �yy = ��xx �6�

hese expressions confirm that the streamwise component of the
n-plane normal stress, �xx, is positive �tensile� on the upstream
alf and negative �compressive� on the downstream half of the
late. The transverse component of the normal stress, �yy, is also
ositive or negative depending on the sign of the Poisson ratio.
ompression raises the possibility of buckling and wrinkling
hen the shear stress � exceeds a critical threshold.
To compute the transverse deflection along the z axis upon in-

eption of buckling, z= f�x ,y�, we work under the auspices of
inear elastic stability of thin plates and shells and derive the lin-
ar von Kármán equation,

�4f 	 �2�2f =
�4f

�x4 + 2
�4f

�x2�y2 +
�4f

�y4

=
h

EB
��xx

�2f

�x2 + 2�xy
�2f

�x�y
+ �yy

�2f

�y2 − bx
�f

�x
− by

�f

�y
� −

k

EB
f

�7�

here EB is the bending modulus and k is the spring constant of
he foundation with dimensions of force over cubed length
F /L3�. In a physiological context, the bending modulus of a typi-
al biological membrane is EB
1�10−12 dyn·cm. In the human
irculation, � is on the order of 1 cP, or 1 mPa·s, and the shear
tress varies in the range of 1–2 Pa through all branches, corre-
ponding to G�100 s−1.

The fourth-order differential equation �Eq. �7�� incorporates
osition-dependent coefficients multiplying the second derivatives
n the right-hand side. Since the membrane is assumed to be
lamped around the rim, the deflection satisfies homogeneous Di-
ichlet and Neumann boundary conditions around the rim in the
y plane, f =0 and �f /�n=0, where � /�n denotes the normal
erivative.

Substituting the expressions for the in-plane shear stresses in
q. �7� and nondimensionalizing lengths by the plate radius a, we

x

y
z

θ

u = Gzx

Membrane

ig. 1 Shear flow past a membrane patch modeled as an elas-
ic plate flush mounted on a plane wall. The lateral deformation
f the membrane is resisted by an elastic material supporting
he membrane from underneath.
erive the dimensionless parameters
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�̂ =
�a3

EB
, � =

ka4

EB
�8�

expressing, respectively, the strength of the shear flow and the
stiffness of the spring relative to the developing bending mo-
ments. Equation �7� admits the trivial solution, f =0, for any value
of �̂ and nontrivial eigensolutions at a sequence of discrete eigen-
values. Numerical solutions for �=0 were derived by Luo and
Pozrikidis �5� using analytical and finite-element methods. The
computation of these eigenvalues and corresponding eigenfunc-
tions in the more general case where � is nonzero is the main
objective of our analysis.

When the plate is uniformly compressed, �xx=−N /h, �yy
=−N /h, �xy =0, and �yx=0, and in the absence of a body force,
the governing equation �Eq. �7�� reduces to

�4f = −
N

EB
�2f −

k

EB
f �9�

where N is the magnitude of the isotropic compressive tension.
Nondimensionalizing lengths by the plate radius a, we find that
the solution depends on the dimensionless group �	Na2 /EB, and
stiffness parameter �. The eigensolutions of this equation were
computed by Wang �3� for several types of boundary conditions
using Fourier–Bessel expansions.

3 Fourier Series Solution
Following Luo and Pozrikids �5�, we introduce the plane polar

coordinates defined in Fig. 1 and nondimensionalize the position,
radial distance, and membrane deflection by the patch radius a.
Dimensionless variables are indicated by a hat; thus, r̂=r /a and

f̂ = f /a. The eigenfunctions of Eq. �7� are expanded in Fourier
series,

f̂�r̂,	� =
1

2
p0�r̂� + �

n=1




�pn�r̂�cos n	 + qn�r̂�sin n	�

= �
n=−





Fn�r̂�exp�− in	� �10�

where i is the imaginary unit, pn�r̂� and qn�r̂� are real functions,
and Fn�r̂� is a complex dimensionless function defined by

Fn�r̂� 	
1

2
�pn�r̂� + iqn�r̂�� �11�

for n�0. For n�0, Fn�r̂�=F
−n
* �r̂�, where an asterisk denotes the

complex conjugate. To ensure that the membrane shape is smooth
at the origin, we require Fn�0�=0 for n�1. A straightforward
computation yields the following expressions for the Laplacian
and bi-Laplacian in-plane polar coordinates:

�̂2 f̂ = �
n=−





Qn�r̂�exp�− in	�, �̂4 f̂ = �
n=−






n�r̂�exp�− in	�

�12�

where �̂ is the gradient with respect to x̂	x /a and ŷ	y /a,

Qn 	 Fn� +
Fn�

r̂
− n2Fn

r̂2 �13�

a prime denotes a derivative with respect to r̂, and


n�r̂� 	 Qn� +
Qn�

r̂
− n2Qn

r̂2 = Fn� +
2

r̂
Fn� −

1 + 2n2

r̂2 Fn� +
1 + 2n2

r̂3 Fn�

+ n2n2 − 4

ˆ4 Fn �14�

r
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Expressing the right-hand side of Eq. �7� in plane polar coordi-
ates and substituting the Fourier expansion, we find

�̂4 f̂ = − �
n=−



 
 �̂

3 − �
�nei	 + �Fn +

�̂

3 − �
�ne−i	�e−in	 �15�

hich can be restated as

�̂4 f̂ = − �
n=−



 
 �̂

3 − �
�n+1 + �Fn +

�̂

3 − �
�n−1�e−in	 �16�

here

�n = r̂Fn� + 
3 + �

2
+ �1 − ��n�Fn� + n�1 + �

2
− �n�Fn

r̂

�n = r̂Fn� + 
3 + �

2
− �1 − ��n�Fn� − n�1 + �

2
+ �n�Fn

r̂
�17�

Substituting Eq. �12� into Eq. �7� and equating corresponding
ourier coefficients, we derive an infinite tridiagonal system of
rdinary differential equations,


n + �Fn = −
�̂

3 − �
��n+1 + �n−1� �18�

or n=0, �1, �2, . . .. Approximate eigenvalues are computed by
runcating the system at a finite level, n= �N. In the case of
igensolutions with a left-to-right symmetry with respect to the zx
lane, the Fourier series involves only cosine terms; the compo-
ent functions Fn are real, Fn=F−n, and �−n=�n. The general
ystem �Eq. �18�� then reduces to


0 + �F0 = −
2�̂

�1

(a)

0 2
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Λ
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2

(b)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

r/a

Fig. 2 „a… Effect of the elastic foundation
radially compressed circular plate for n=0
ted line…. This figure reproduces Fig. 1 of
�1/4=3, 4, 5, 6, and „b… n=0 and „c… n=1.
3 − �
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n + �Fn = −
�̂

3 − �
��n+1 + �n−1� �19�

for n=1,2 , . . . ,N. If the eigensolutions are antisymmetric with
respect to the zx plane, the Fourier series involves only sine terms,
the component functions Fn are imaginary, Fn=−F−n, �−n=−�n,
and the general system �Eq. �18�� reduces to 
0+�F0=0 for the
zeroth Fourier mode and the second equation in Eq. �19� for
n=1,2 , . . . ,N.

To solve the partial differential equations encapsulated in Eq.
�18�, we approximate the Fourier modulating modes Fn�r� with
polynomials, as discussed by Luo and Pozrikidis �5�. Collocating
at Chebyshev nodes, we derive a generalized eigenvalue system of
algebraic equations for the critical hydrodynamic stress. Physi-
cally, the smallest eigenvalue provides us with the minimum shear
stress for the onset of buckling.

A similar method was implemented for solving Wang’s
compressed-plate equation �Eq. �9��. Substituting in Eq. �9�
f̂�r̂ ,	�= pn�r̂�cos�n	�, we derive the fourth-order ordinary differ-
ential equation

L2pn + �Lpn + �pn = 0 �20�

where

L =
d2

dr̂2 +
1

r

d

dr̂
−

n2

r2 �21�

is a second-order differential operator. In this case, because of the
uniform and isotropic tensions acting on the plate, the Fourier
modes are decoupled.

4 Results and Discussion
To establish a point of reference, we first discuss the instability

of the radially compressed plate governed by Eq. �20�. Figure 2

6 8
γ1/4

c)

−1 −0.5 0 0.5 1
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−0.5

0

0.5

1

1.5

r/a

nstant � on the lowest eigenvalues of a
lid line…, n=1 „dashed line…, and n=2 „dot-
ng †3‡. „b… and „c… Eigenfunctions, pn, for
4
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demonstrates the effect of the elastic foundation parameter � on
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he lowest eigenvalues corresponding to n=0 �axisymmetric
ode� and n=1,2 �nonaxisymmetric modes�. The results pre-

isely reproduce those shown in Fig. 1 of Wang �3� obtained by a
ifferent method. As � is increased, the eigenvalue branches cross
nd then intertwine. Wang �3� noted that in the presence of a stiff
lastic foundation, the axisymmetric mode is not necessarily the
ost dangerous buckling mode when the plate is strongly coupled

o the foundation. As � increases, the eigenfunctions of the axi-
ymmetric mode and nonaxisymmetric modes take complicated
hapes, as shown in Figs. 2�b� and 2�c�.

Next, we discuss the instability of the circular plate under the
ction of a shear flow. Luo and Pozrikidis �5� found that, in the
bsence of the elastic substrate, �=0, the buckling eigenfunctions
onsist of a sequence of symmetric modes, denoted as “S,” inter-
aced with antisymmetric modes, denoted as “A.” Figure 3 shows
he effect of the substrate elastic parameter � on the lowest few
igenvalues �̂ for �=0 and 0.25. As � increases, the eigenvalues
ncrease monotonically while maintaining their relative position.

(a)

0 2 4 6 8 10
10

15

20

25

30

γ1/4

α

Fig. 3 Effect of the elastic foundation const
�=��̂, for Poisson ratio „a… �=0 and „b… �=0
modes S1, S2, A1, A2, and S3, where “S” d
antisymmetric mode.
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Fig. 4 Buckling eigenmodes for �=0.25, �=6
ˆ ˆ
�=291.82 „A1…, and „d… �=371.08 „A2…
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In contrast to the radially compressed plate, the buckling modes
caused by the hydrodynamic shear stress do not cross, and the
symmetric mode S1 is always the most dangerous buckling mode.
Selected eigenfunctions for �=0.25 and �=625 are shown in Fig.
4.

Figure 5 illustrates the effect of � on the profile of the eigen-
functions in the zx plane for the symmetric eigenmodes corre-
sponding to �=0.25 and �=0, 625, and 6561. For high values of
�, the buckled shape is convoluted even for the lowest mode. As
� increases, the deflection becomes more pronounced at the
downstream portion of the plate.

Luo and Pozrikidis �5� found that the Poisson ratio may affect
the order of appearance of the symmetric and antisymmetric
eigenmodes, as illustrated in Fig. 6 for �=0, 625, and 4096. In all
cases, the eigenvalue �̂ decreases as � is increased, and the rate of
decrease varies for each eigenmode. At certain critical Poisson
ratios, the pair of the S2 and A1 modes and the pair of the S3 and
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α

on the square root of the lowest eigenvalue,
. From bottom to top, the curves represent
tes a symmetric mode and “A” denotes an
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and „a… �̂=217.24 „S1…, „b… �̂=282.93 „S2…, „c…
(
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.25
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(

(
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Fig. 5 Comparison of the buckling mode profiles for �=0.25 and �=0 „dash-dotted line…,
�=625 „dashed line…, and �=6561 „solid line…, and buckling modes „a… S1, „b… S2, and „c…

S3
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Fig. 6 First few eigenvalues, �=��̂, plotted against � for a circular membrane with the
spring stiffness „a… �=0, „b… �=625, and „c… �=4096. From bottom to top along �=0, the

curves represent modes S1, S2, A1, A2, and S3.
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2 modes cross over. At these Poisson ratios, the eigenfunctions
f the double eigenvalues are arbitrary superposition of the sym-
etric and antisymmetric modes and may thus have an arbitrary

rientation in space. The critical Poisson ratios are affected only
lightly by �.

It is instructive to compare the numerical results of the full
wo-dimensional model with the predictions of a one-dimensional

odel that arises by applying the von Kármán equation at the
idplane, y=0, and discarding the y dependence. The deflection

s governed by a linear ordinary differential equation with
osition-dependent coefficients,

d4f

dx4 +
k

EB
f = −

2�

�3 − ��EB
�x

d2f

dx2 +
3 − �

2

df

dx
� �22�

ubject to the clamped-end boundary conditions f =0 and f�=0 at
= �a. The nondimensional form is

d4 f̂

dx̂4 + � f̂ = −
2�̂

3 − �
�x̂

d2 f̂

dx̂2 +
3 − �

2

df̂

dx̂
� �23�

n physical grounds, we anticipate that the eigenvalues and cor-
esponding eigenfunctions will be approximations of the symmet-
ic circular membrane modes.

We were unable to solve the one-dimensional eigenvalue prob-
em by analytical methods. Numerical solutions were produced
nstead using a finite-difference method resulting in a pentadiago-
al system of algebraic equations for the nodal values of the
igenfunctions. Figure 7�a� compares the eigenvalues of the one-
imensional model with the S1 eigenvalues of the two-
imensional model. The critical buckling load predicted by the
ne-dimensional model is lower than that of the two-dimensional
odel and thus provides us a conservative prediction independent

f the elastic foundation constant. Figures 7�b� and 7�c� compare
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Fig. 7 „a… The lowest eigenvalues of the o
compared with the S1 eigenvalues of the t
„c… The solid lines illustrate the eigenfunc
=0 and „c… �=625. The profiles of the tw
shown as dashed lines.
he first buckling mode of the one-dimensional model for �=0
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and �=625 with the corresponding eigenfunction profiles of the
two-dimensional solution at y=0. The agreement is excellent for
�=0 and reasonable for �=625. We conclude that the one-
dimensional model is useful for making reliable engineering pre-
dictions.

5 Conclusion
We have investigated the effect of an elastic foundation on the

buckling of a circular plate under the action of a uniform body
force tangential to the plate, imparted by an overpassing simple
shear flow. In the case of the radially compressed circular plate, a
nonaxisymmetric deflection in an indeterminate meridional posi-
tion may occur when the plate-substrate coupling is sufficiently
strong. Buckling first occurs in the symmetric mode where the
deflection is left-to-right symmetric with respect to the direction
of the flow. Our results serve as a guide for future laboratory
observations aimed at documenting the buckling of exposed cells
and assessing their significance in mechanotransduction.
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