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A Lobatto interpolation grid in the tetrahedron
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A sequence of increasingly refined interpolation grids inside the tetrahedron is proposed with the goal
of achieving uniform convergence and ensuring high interpolation accuracy. The number of interpolation
nodes, N , corresponds to the number of terms in the complete mth-order polynomial expansion with
respect to the three tetrahedral barycentric coordinates. The proposed grid is constructed by deploying
Lobatto interpolation nodes over the faces of the tetrahedron, and then computing interior nodes using
a simple formula that involves the zeros of the Lobatto polynomials. Numerical computations show that
the Lebesgue constant and interpolation accuracy of the proposed grid compare favourably with those of
alternative grids constructed by solving optimization problems. The condition number of the mass matrix
is significantly lower than that of the uniform grid and comparable to that of optimal grids proposed by
previous authors.
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1. Introduction

We consider the polynomial interpolation of a function, f , inside a standard orthogonal tetrahedron
in the ξηζ space. The four vertices of the standard tetrahedron are located at the origin and along the
three Cartesian axes at positions (1, 0, 0), (0, 1, 0) and (0, 0, 1). A complete mth-degree interpolating
polynomial, pm , defined inside the tetrahedron, can be expressed in a series of basis functions that
constitute a complete base of the mth-degree polynomial space, φi , i = 1, 2, . . . , N , as

f (ξ, η, ζ ) ≈ pm(ξ, η, ζ ) =
N∑

i=1

biφi (ξ, η, ζ ), (1.1)

where bi are unknown coefficients. The number of terms in the expansion, N , is related to the polynomial
order, m, by

N =
(

m + 3
3

)
= 1

6
(m + 1)(m + 2)(m + 3). (1.2)

One possible choice of basis functions is the family of monomial products, φi = ξ pηqζ r , where p, q
and r are non-negative integers. Better choices are provided by the orthogonal polynomials discussed
in Section 2, and by the partially orthogonal hierarchical polynomials used in the finite-element modal
expansion discussed by Sherwin & Karniadakis (1995, 1996) and Karniadakis & Sherwin (2004).

To compute the expansion coefficients, bi , we introduce N interpolation nodes, (ξ j , η j , ζ j ), inside,
over faces and at the vertices of the tetrahedron, enforce the interpolation conditions

f (ξ j , η j , ζ j ) = pm(ξ j , η j , ζ j ) =
N∑

i=1

biφi (ξ j , η j , ζ j ), (1.3)
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for j = 1, 2, . . . , N and solve the resulting linear system of equations

VT · b = f, (1.4)

where V is the generalized Vandermonde matrix (VDM),

Vi j ≡ φi (ξ j , η j , ζ j ). (1.5)

Alternatively, we may construct the interpolating polynomial explicitly in terms of the data using the
Lagrange interpolating polynomials, as

pm(ξ, η, ζ ) =
N∑

i=1

f (ξi , ηi , ζi )ψi (ξ, η, ζ ). (1.6)

The i th-node cardinal interpolation function, ψi (ξ, η, ζ ), takes the value of unity at the i th node and the
value of zero at the remaining nodes, i.e.

ψi (ξ j , η j , ζ j ) = δi j , (1.7)

where δi j is Kronecker’s delta. The computation of these cardinals will be discussed in later sections.
In finite-element applications, in order to ensure C0 continuity of the finite-element expansion over

the entire solution domain consisting of the union of adjacent tetrahedra, we assign one shared node at
each one of the four vertices, distribute m + 1 vertex-inclusive shared nodes along each of the six edges
and deploy 1

2 (m + 1)(m + 2) vertex- and edge-inclusive shared nodes in each face. The edge nodes
define an mth-degree polynomial with respect to arc length along each edge, and the face nodes define
an mth-degree polynomial in two barycentric coordinates in each face. The vertex, edge and face nodes
comprise a set of

NS = 2(m2 + 1) (1.8)

surface nodes. When m � 4, these are complemented by

NI = N − NS = 1

6
(m − 3)(m − 2)(m − 1) (1.9)

interior nodes representing additional degrees of freedom. It is worth noting that the number of interior
nodes is equal to the number of terms in the complete (m − 4)th-degree polynomial expansion. Table 1
lists N and NI for polynomial order m up to nine.

In the case of a uniform interpolation grid, the nodes are deployed at the positions (ξi , η j , ζk),
where ξi = (i − 1)/m, η j = ( j − 1)/m and ζk = (k − 1)/m. For each value of the index i in the

TABLE 1 Total number of interpolation nodes, N , and
number of interior nodes, NI, in the complete mth-
degree polynomial expansion inside a tetrahedron

m 1 2 3 4 5 6 7 8 9
N 4 10 20 35 56 84 120 165 220
NI 0 0 0 1 4 10 20 35 56
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range i = 1, 2, . . . , m + 1, the index j takes values in the range j = 1, 2, . . . , m + 2 − i ; and for each
doublet (i, j), the index k takes values in the range k = 1, 2, . . . , m + 3 − i − j . The corresponding
Lagrange interpolating polynomials can be constructed explicitly in terms of 1D Lagrange polynomials
using a simple formula (e.g. Pozrikidis, 2005). Unfortunately, as the polynomial order is raised, the
interpolation error is not necessarily reduced uniformly inside the tetrahedron due to the Runge effect
manifested by oscillations in the cardinal interpolation functions.

To prevent the oscillations, we may require that the nodes are distributed such that the magnitude
of the i th cardinal interpolation function reaches the maximum value of unity at the i th node, and
varies between zero and unity throughout the tetrahedron. In this way, the sum of the absolute value of
the interpolation functions is bounded by N at each point inside the tetrahedron. This requirement is
satisfied by the Fekete points, which are computed by maximizing the magnitude of the determinant of
the VDM defined in (1.5) within the confine of the tetrahedron. Note that, even though the VDM itself
depends on the choice of basis functions, φi , since changing the polynomial base only multiplies the
determinant by a constant factor, the maximum and thus the Fekete set is independent of the adopted
base and uniquely defined. Fekete sets are available for the 1D interval (scaled zeros of the Lobatto
polynomials), for the triangle, for the rectangle and for the hexahedron (tensor product of the 1D Fekete
sets), but not for the tetrahedron, as reviewed by Pozrikidis (2005). However, two alternative optimal
sets of interpolation nodes are available for the tetrahedron.

Chen & Babuška (1996) computed node distributions inside the tetrahedron by maximizing the
magnitude of the determinant of the VDM, as well as by minimizing the L2 norm

(∫∫∫
T

N∑
i=1

|ψi (ξ, η, ζ )|2dξ dη dζ

)1/2

, (1.10)

subject to two stipulations: the nodes in each face are distributed as in the case of 2D interpolation
over the triangle, and the interior point distributions observe the geometrical symmetries of the tetrahe-
dron. Note that the first stipulation disqualifies the first distribution from being called a true Fekete set.
Hesthaven & Teng (2000) performed a similar computation by minimizing an electrostatic potential and
discovered a different set of optimal nodes for the tetrahedron.

Blyth & Pozrikidis (2005) recently proposed a simple interpolation grid over the triangle, heretoforth
referred to as the Lobatto triangle grid (LTR). To generate this grid, a 1D ‘master grid’ is first introduced
comprising a set of m + 1 points,

vi = 1

2
(1 + ti ), (1.11)

for i = 2, 3, . . . , m, where ti are the zeros of the (m − 1)th-degree Lobatto polynomial, Lom−1 = L ′
m , a

prime denotes a derivative, and Lm is a Legendre polynomial. The end-points are located at v1 = 0 and
vm+1 = 1. Thus, the nodes of the master grid are the zeros of the completed (m + 1)th-degree Lobatto
polynomial,

Loc
m+1(t) ≡ (t2 − 1)Lom−1(t). (1.12)

The nodal coordinates of the LTR over the standard orthogonal triangle in the ξη plane are generated by
the formula

ξ = 1

3
(1 + 2vi − v j − vk), η = 1

3
(1 − vi + 2v j − vk), (1.13)
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FIG. 1. The Lobatto triangle nodes (+) and associated Fekete nodes (o) over the (a) orthogonal and (b) equilateral triangle for
m = 6.

for i = 1, 2, . . . , m +1 and j = 1, 2, . . . , m +2− i , where k = m +3− i − j . Figure 1 shows the node
distribution for m = 6 over the standard orthogonal triangle and corresponding equilateral triangle. The
corresponding Fekete sets are also shown in this figure after Taylor et al. (2000). Geometrically, the LTR
nodes are located at the centroids of internal triangles formed by three families of parallel barycentric
coordinates, as shown in Fig. 1(b). Note that the LTR nodes are displaced slightly inward with respect
to the Fekete nodes. Blyth & Pozrikidis (2005) found that the Lebesgue constant of the LTR compares
favourably with that of the optimal Fekete grid.

In this paper, a similar simple construction is proposed for the tetrahedron, coined the Lobatto tetra-
hedral grid (LTT). First, an optimized interior set is proposed subject to the Lobatto triangle distribution
in each face, by maximizing the magnitude of the determinant of the generalized VDM. Second, a sim-
ple formula for generating the interior nodes is devised as an extension of the LTR formula for the
triangle. The simple formula will be shown to produce results that compare favourably with those ob-
tained using more involved distributions constructed by optimization, and is thus highly recommended
in spectral-element implementations.

2. Orthogonal tetrahedral polynomials

Our working polynomial expansion base comprises of the orthogonal tetrahedral polynomials employed
by Sherwin & Karniadakis (1995) and further discussed by Karniadakis & Sherwin (2004). To introduce
these polynomials, we map the standard tetrahedron in the ξηζ space to the standard cube, −1 �
(ξ ′, η′, ζ ′) � 1, using the transformation

ξ = 1 + ξ ′

2

1 − η′

2

1 − ζ ′

2
,

η = 1 + η′

2

1 − ζ ′

2
,

ζ = 1 + ζ ′

2
, (2.1)
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as illustrated in Fig. 2. The orthogonal tetrahedral polynomials are given by

Pklp = Lk(ξ
′)J (2k+1,0)

l (η′)J (2k+2l+2,0)
p (ζ ′)

(
1 − η′

2

)k (
1 − ζ ′

2

)k+l

, (2.2)

where Lk are Legendre polynomials, and J (α,β)
k are Jacobi polynomials. Substituting the inverse map-

ping of (2.1) and cancelling the denominators, we find that Pklp is a kth-degree polynomial in ξ , a
(k + l)th-degree polynomial in η and a (k + l + p)th-degree polynomial in ζ .

The first few tetrahedral orthogonal polynomials are listed in Table 2. Note that P000, P001,
P002, . . . are pure polynomials in ζ , P010,P020, . . . are polynomials in both η and ζ and P100,P200, . . .
are polynomials in all three variables. The properties of the Legendre and Jacobi polynomials ensure

FIG. 2. Mapping of the standard orthogonal tetrahedron in the ξηζ space to a cube in the ξ ′η′ζ ′ space.

TABLE 2 List of the constant, linear and quadratic orthogonal
polynomials over the tetrahedron

P000 = 1

P100 = 2ξ + η + ζ − 1

P010 = 3η + ζ − 1

P001 = 4ζ − 1

P200 = 6ξ2 + η2 + ζ 2 + 6ξη + 6ξζ + 2ηζ − 6ξ − 2η − 2ζ + 1

P110 = 5η2 + ζ 2 + 10ξη + 2ξζ + 6ηζ − 2ξ − 6η − 2ζ + 1

P101 = 6ζ 2 + 12ξζ + 6ηζ − 2ξ − η − 7ζ + 1

P020 = 10η2 + ζ 2 + 8ηζ − 8η − 2ζ + 1

P011 = 6ζ 2 + 18ηζ − 3η − 7ζ + 1

P002 = 15ζ 2 − 10ζ + 1
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that (2.2) satisfies the orthogonality relation∫∫∫
T
PklpPqrs dξ dη dζ = 0, (2.3)

when k �= q , l �= r or p �= s, where the integration is performed over the volume of the standard
tetrahedron, T . The self-projection is given by

Gklp =
∫∫∫

T
P2

klp dξ dη dζ = 1

(2k + 1)(2k + 2l + 2)(2k + 2l + 2p + 3)
. (2.4)

Comparing this formula with a corresponding result for the Proriol (1957) orthogonal polynomials de-
fined over the triangle (Blyth & Pozrikidis, 2005) suggests a simple formula for the simplex.

The tetrahedral orthogonal polynomials provide us with a complete orthogonal base. Any function,
f (ξ, η, ζ ), defined over the standard tetrahedron in the ξηζ space, can be approximated with a complete
mth-degree polynomial in ξ , η and ζ , expressed in the form

f (ξ, η, ζ ) =
m∑

k=0

m−k∑
l=0

m−k−l∑
p=0

aklpPklp(ξ, η, ζ ), (2.5)

where the triple sum is designed so that k + l + p � m. Multiplying (2.5) by Pklp, integrating over
the volume of the standard tetrahedron and using the orthogonality property, we find that the expansion
coefficients are given by

aklp = 1

Gklp

∫∫∫
T

f (ξ, η, ζ )Pklp(ξ, η, ζ )dξ dη dζ, (2.6)

where Gklp is defined in (2.4). The terms in (2.5) can be arranged into a Pascal pyramid consisting
of a stack of Pascal triangles with increasing dimensions. The first triangle is a point representing the
constant term

P000,

the second triangle encapsulates the linear functions

P100

P010 P001,

the third triangle encapsulates the quadratic functions

P200

P110 P101

P020 P011 P002

and the (m + 1)th triangle encapsulates the mth-order functions. To convert a monomial product series
into the equivalent orthogonal polynomial series, we use the expressions given in Table 3.
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TABLE 3 Expressions of monomials products in terms of the tetrahedral
orthogonal polynomials

1 = P000

ξ = 1
12 (3P000 + 6P100 − 2P010 − P001)

η = 1
12 (3P000 + 4P010 − P001)

ζ = 1
4 (P000 + P001)

ξ2 = 1
90 (9P000 + 30P100 − 10P010 − 5P001 + 15P200 − 9P110

− 6P101 + 3P020 + 2P011 + P002)

η2 = 1
90 (9P000 + 20P010 − 5P001 + 9P020 − 4P011 + P002)

ζ 2 = 1
30 (3P000 + 5P001 + 2P002)

ξη = 1
180 (9P000 + 15P100 + 5P010 − 5P001 + 18P110 − 3P101

− 9P020 − P011 + P002)

ξζ = 1
180 (9P000 + 15P100 − 5P010 + 5P001 + 15P101 − 5P011 − 4P002)

ηζ = 1
180 (9P000 + 10P010 + 5P001 + 10P011 − 4P002)

3. Lobatto grid over the tetrahedron

In the proposed distribution, Lobatto triangle interpolation nodes are distributed over the faces of the
tetrahedron, as follows:

• On the ξη face, nodes are distributed at

ξ = 1

3
(1 + 2vi − v j − vl), η = 1

3
(1 − vi + 2v j − vl), ζ = 0, (3.1)

for i = 1, 2, . . . , m + 1 and j = 1, 2, . . . , m + 2 − i , where l = m + 3 − i − j .

• On the ηζ face, nodes are distributed at

ξ = 0, η = 1

3
(1 + 2v j − vk − vl), ζ = 1

3
(1 − v j + 2vk − vl), (3.2)

for j = 1, 2, . . . , m and k = 2, 3, . . . , m + 2 − j , where l = m + 3 − j − k.

• On the ζξ face, nodes are distributed at

ξ = 1

3
(1 + 2vi − vk − vl), η = 0, ζ = 1

3
(1 − vi + 2vk − vl), (3.3)

for i = 2, 3, . . . , m and k = 2, 3, . . . , m + 2 − i , where l = m + 3 − i − k.

• On the slanted face, nodes are distributed at

ξ = 1

3
(1 + 2vi − v j − vl), η = 1

3
(1 − vi + 2v j − vl), ζ = 1 − ξ − η, (3.4)

for i = 2, 3, . . . , m and j = 2, 3, . . . , m + 1 − i , where l = m + 3 − i − j .

Note that the range of indices has been adjusted so that each node is uniquely defined. The resulting
node distributions over the faces of the tetrahedron for m = 3 and 4 are shown in Fig. 3.
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FIG. 3. (a) A 20-node tetrahedron supporting a complete cubic expansion, m = 3 and (b) a 35-node tetrahedron supporting a
complete quartic expansion, m = 4. For clarity, only the face nodes in the three orthogonal planes are show in (b).

3.1 Lobatto grid with optimized interior nodes

In the first approach, the interior nodes arising for m � 4 are found by maximizing the magnitude of the
determinant of the generalized VDM, det(V). The matrix itself is written with respect to the orthogonal
polynomial base discussed in Section 2. Though the modal expansion base is somewhat preferable in
that only the portion of the matrix corresponding to the interior nodes must be considered, as discussed
by Chen & Babuška (1996), the orthogonal base makes for a simpler bookkeeping.

The optimization algorithm is a variation of the conjugate-gradients method, known as the Polak–
Ribiere algorithm (Press et al., 1986, New york, Cambridge University Press). First, an initial guess is
made for the coordinates of the interior nodes encapsulated in the vector x. Subsequently, the update
directions, pn , are computed as

p1 = g1 and pn = gn + βnpn−1 for n > 1, (3.5)

where g = ∇ det(V) is the gradient, and

βn = (gn − gn−1) · gn

gn−1 · gn−1
. (3.6)

The nodal position vector is updated as

xn+1 = xn + αnpn, (3.7)

where the step size, αn , is found by maximizing the magnitude of det(V) along the update direction,
pn , using a 1D searching algorithm such as Brent’s method (Press et al., 1986, New York, Cambridge
University Press), subject to the constraint that the nodes lie inside the tetrahedron. The derivatives
defining the gradient g are computed using the formula

g(k)
i = ∂ det(V)

∂x (k)
i

= (−1)i+ j det(A j i )
∂φ j

∂x (k)
i

= det(V)V̄i j
∂φ j

∂x (k)
i

, (3.8)

where x (k)
i is the kth coordinate of the i th node, A j i is the matrix cofactor of V associated with the

element Vji and V̄i j are the elements of the inverse of the VDM, V̄ = V−1.
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The accuracy of the minimizer is limited by the finite precision in the computation of the determinant
of V. To sharpen the optimization, at the end of the conjugate-gradient module, the system of non-linear
equations, g = 0, is solved using Newton’s method using the Hessian matrix

H (pq)
ik = ∂g(p)

i

∂x (q)
k

= ∂

∂x (q)
k

(
(−1)i+ j det(A j i )

∂φ j

∂x (p)
i

)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(−1)i+ j det(A j i )
∂2φ j

∂x(p)
i x (q)

k

, for k = i,

(−1)i+ j det(A j i ) Ā ji
kl

∂φl̃

∂x(q)
k

∂φ j

∂x (p)
i

, for k < i,

(−1)i+ j det(A j i ) Ā ji

k̃l

∂φl̃

∂x(q)
k

∂φ j

∂x (p)
i

, for k > i,

(3.9)

where Ā ji
kl are elements of the matrix Ā j i = (A j i )−1, k̃ = k −1, l̃ = l for l < j and l̃ = l +1 for l � j .

Because the optimization is sensitive to the initial guess and easily swayed by a local minimum, a
good initial guess is required. For a symmetric nodal distribution corresponding to polynomial degree,
m, the interior nodal structure resembles the full structure of the (m −4)th-degree polynomial expansion
shrunk by a certain factor with respect to the tetrahedron centroid. In our computations, an improved
(m − 4)th-degree nodal set is initially constructed by uniformly shrinking the corresponding set by
an optimal ratio towards the centre of the tetrahedron. The optimal ratio was obtained by solving a
1D optimization problem using Brent’s method with the goal of maximizing |det(V)|. The optimized
shrinking ratios for m = 5, 6, 7, 8 and 9, are found to be, respectively, 0.28001, 0.46863, 0.58557,
0.66704 and 0.72627.

3.2 Lobatto grid over the tetrahedron

In the second approach, interior nodes are heuristically introduced based on the master grid defined in
(1.11), at positions

ξ = 1

4
(1 + 3vi − v j − vk − vl),

η = 1

4
(1 − vi + 3v j − vk − vl),

ζ = 1

4
(1 − vi − v j + 3vk − vl),

(3.10)

for i = 2, 3, . . . , m, j = 2, 3, . . . , m + 1 − i and k = 2, 3, . . . , m + 2 − i − j , where l = m +
4 − i − j − k. Note that the range of subscripts restricts the nodes inside the tetrahedron. Since both
the interior and boundary nodes are based on the 1D completed Lobatto points, we refer to this set as
the Lobatto tetrahedral (LTT) set. Formula (3.10) together with (3.1)–(3.4) ensures that the LTT distribu-
tion observes five groups of multi-fold symmetries with respect to the ξηζ coordinates, as discussed in
Chen & Babuška (1996). The symmetry of the LTT is evident in Fig. 4 where the full nodal sets for
m = 5 and 6 are displayed. Figure 5 compares the interior node distributions obtained by the two
methods discussed in this section for m = 5 and 6, and demonstrates that the differences are small.

If the range of subscripts in Formula (3.10) is extended such that i = 1, 2, . . . , m + 1, j =
1, 2, . . . , m + 2 − i and k = 1, 2, . . . , m + 3 − i − j , a complete set of N nodes will arise. However,
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FIG. 4. Multi-fold symmetry of the LTT distribution over the regular tetrahedron (top view) for (a) m = 5 and (b) m = 6. The
interior points are shown as circles and the boundary points are shown as crosses.

FIG. 5. Comparison of the interior nodal distributions for (a) m = 5 and (b) m = 6, over an orthogonal tetrahedron obtained by
optimization (o) and Formula (3.10) (+).

the peripheral nodes produced by the extended formula do not always lie in the faces of the tetrahedron.
An example of an anomalous distribution is shown in Fig. 6 for m = 4, where only the peripheral nodes
located near the three orthogonal faces are displayed. The extended formula produces some peripheral
nodes that correspond to the completed Lobatto points along each edge, but does not necessarily pro-
duce nodes that lie within the triangular faces, as required. It is for this reason that Formula (3.10) is
combined with the LTR distribution to generate a complete set.

4. Properties of the Lobatto tetrahedral sets

To assess the properties of the two grids proposed in Section 3, we consider the Lebesgue constant,

ΛN ≡ max
x∈T

{LN (x)}, (4.1)
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FIG. 6. Peripheral nodes near the three orthogonal faces of the tetrahedron produced by extending the range of the subscripts in
Formula (3.10) for m = 4. The nodes include the Lobatto points along the edges (o); the rest of the nodes (+) do not lie in the
faces of the tetrahedron, but are slightly displaced towards the interior of the domain; (a) oblique and (b) side view.

where the point x = (ξ, η, ζ ) lies in the tetrahedron, T , and LN is the Lebesgue function,

LN (x) =
N∑

i=1

|ψi (x)|. (4.2)

To compute the i th cardinal interpolation function, ψi (ξ, η, ζ ), we may expand it into a series of orthog-
onal tetrahedral polynomials using (2.5),

ψi (ξ, η, ζ ) =
m∑

j=0

m− j∑
k=0

m− j−k∑
l=0

a(i)
jklP jkl(ξ, η, ζ ) ≡

N∑
j=1

b(i)
j φ j (ξ, η, ζ ), (4.3)

and then compute the coefficients b(i)
j by solving the Vandermonde system

VT · b(i) = e(i), (4.4)

where Vjk ≡ φ j (ξk, ηk, ζk), and ei is the N -dimensional unit vector in the i th direction. Thus,

ψi (ξ, η, ζ ) = e(i) · V−1 · φφφ, (4.5)

or

ψi (ξ, η, ζ ) =
N∑

k=1

V −1
ik φk(ξ, η, ζ ). (4.6)

This formula also arises directly by using the Lagrange interpolation formula to write

φ j (ξ, η, ζ ) =
N∑

k=1

Vjkψk(ξ, η, ζ ). (4.7)
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TABLE 4 Condition number, σ(V), of the VDM defined using the
orthogonal tetrahedral polynomials as basis functions

m 3 4 5 6 7 8 9
Optimized interior 15.7 34.3 65.4 129.3 235.0 418.9 779.9
LTT 15.7 34.3 64.8 120.7 198.9 333.6 568.5

TABLE 5 Comparison of the Lebesgue constant, ΛN , for different distributions
over the tetrahedron

Optimized Chen and Babuška Chen and Babuška Hesthaven
m LTT interior (L2 set) (VDM set) and Teng
2 2.0 2.0 2.0 2.0 2.0
3 2.93 2.93 2.93 2.93 2.93
4 4.07 4.07 4.11 4.15 4.08
5 5.38 5.70 5.62 6.00 5.35
6 7.53 8.84 7.36 8.89 7.34
7 10.17 11.48 9.37 11.64 9.76
8 14.63 15.52 12.31 15.83 13.63
9 20.46 19.76 15.69 22.33 18.90

Typical values of the condition number of the VDM, σ(V) = ‖V‖‖V−1‖, computed using Matlab,
are shown in Table 4. It is interesting to observe that, for high polynomial orders, m, the LTT gives a
condition number that is lower than that of the distribution with optimized interior points.

To compute the Lebesgue constant, we introduce a uniform Cartesian grid, calculate the Lebesgue
function at the grid nodes by exploiting geometrical symmetries and perform a direct search for the max-
imum. The rough maximum is subsequently refined by performing a gradient-based local maximization.
Table 5 shows the Lebesgue constants for the optimized interior and LTT distributions, together with the
corresponding values for the Chen & Babuška (1996) and Hesthaven & Teng (2000) distributions. For m
up to 3, all distributions are identical. For m > 3, the Lebesgue constants for the Lobatto grid are lower
than those for the VDM grid obtained by Chen and Babuška, while comparing favourably with those of
the L2 set obtained by Chen and Babuška and the electrostatics set obtained by Hesthaven and Teng.

As a practical test of the interpolation accuracy, we consider several test functions and compute the
infinity norm of the interpolation error defined as

L∞( f ) = ‖pm − f ‖∞ = max
x∈T

|pm(x) − f (x)|. (4.8)

The infinity norm is evaluated directly by computing the maximum error over the volume of the standard
tetrahedron discretized into a large number of intervals. Table 6 shows the infinity norm of the error for
three selected functions and various degrees of interpolation. Both the LTT and the optimized interior
grid presented in Section 3 outperform the uniform grid.

Of particular interest is the 3D Runge function defined as

fR(ξ, η, ζ ) = 1

1 + 100(ξ − 0.5)2

1

1 + 100(η − 0.5)2

1

1 + 100(ζ − 0.5)2
, (4.9)
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TABLE 6 Interpolation error measured by the infinity norm, L∞( f ), over the tetrahedron, for three
test functions, f1 = cos(5ξ) sin(5η) cos(5ζ ), f2 = cos(10ξ)e2η cos(10ζ ) and fR is the 3D Runge
function defined in the text

Function m 1 3 6 9 12

f1 Uniform grid 1.3197 0.8896 0.1909 0.0062 3.1613 × 10−4

LTT 1.3197 0.6756 0.1334 0.0014 1.1617 × 10−4

Optimized interior 1.3197 0.6756 0.1334 0.0013 —
f2 Uniform grid 9.0610 4.1821 2.6333 1.7350 0.4884

LTT 9.0610 3.9720 1.6512 0.4493 0.0877
Optimized interior 9.0610 3.9720 1.6512 0.4493 —

fR Uniform grid 0.0412 0.0356 0.0467 0.0572 0.4278
LTT 0.0412 0.0370 0.0190 0.0203 0.0168
Optimized interior 0.0412 0.0370 0.0190 0.0203 —

plotted in Fig. 7(a) in the plane ξ = 0. Note that the coefficients in this expression have been adjusted to
account for the unit length of the tetrahedral edges, and the axes have been shifted to the midpoint of the
three orthogonal edges. The interpolation accuracy of the 1D Runge function over the interval [−1, 1]
is known to rapidly worsen as the polynomial order is raised on the uniform grid (e.g. Pozrikidis, 1998,
p. 278, 2005). In three dimensions, we find a similar poor performance on the uniform grid, with the
infinity norm of the error increasing almost linearly with m. The Runge effect is evident in the graphs
presented in Fig. 7(b, c), where the interpolating polynomials of degrees m = 6 and 12 are plotted in
the plane ξ = 0. The 12th-degree interpolating polynomial based on the LTT distribution displayed in
Fig. 7(d) is a much better approximation.

Finite-element formulations of initial-value problems culminate in first-order ordinary differential
equations, where the time derivative of the nodal solution vector is multiplied by the element mass
matrix

Mi j =
∫∫∫

T
ψiψ j dξ dη dζ. (4.10)

To prevent numerical instability, it is desirable to have a well-conditioned mass matrix. Using (4.6) and
the orthogonality property, we find that the mass matrix can be expressed as

Mi j = V −1
ik V −1

jl

∫∫∫
T

φkφl dξ dη dζ =
N∑

k=1

V −1
ik V −1

jk ‖φk‖2, (4.11)

where

‖φk‖2 =
∫∫∫

T
φ2

k dξ dη dζ, (4.12)

is evaluated from (2.4). Table 7 shows the condition number of the mass matrix, σ(M), for five grids,
including the uniform grid. The results show that the condition number of the LTT is comparable to,
though generally somewhat higher than that of the Chen and Babuška L2 grid and the Hesthaven and
Teng electrostatics grid. As m is raised, the condition number grows significantly faster for the uniform
grid than for all other grids.
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FIG. 7. (a) Graph of the 3D Runge function in the ξ = 0 plane. (b, c) The interpolating function for m = 6 and 12 on a uniform
grid and (d) the interpolating function for m = 12 on the LTT.

TABLE 7 Condition number of the mass matrix, σ(M), truncated to its integral
part, for five nodal distributions

m 3 4 5 6 7 8 9
Optimized interior points 110 250 349 833 1582 3979 10915
LTT 110 250 366 704 1514 4048 9876
Chen and Babuška (L2) 111 252 356 685 1452 3346 7951
Hesthaven and Teng 110 250 352 705 — 3507 9769
Uniform grid 105 237 410 1089 2735 8454 26314

The elements of the diffusion or Laplacian matrix, D, may also be computed using (4.6), as

Di j ≡
∫∫∫

T
∇ψi · ∇ψ j dξ dη dζ = V −1

ik V −1
jl

∫∫∫
T

∇φk · ∇φl dξ dη dζ, (4.13)

where ∇ = (∂/∂ξ, ∂/∂η, ∂/∂ζ ) is the gradient operator. The diffusion matrices for m = 1 and 2 are
displayed in Table 8. A Matlab script that produces the matrices for higher-order expansions of the LTT
distribution can be obtained from the authors on request.
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TABLE 8 Interpolation node coord-
inates over the orthogonal tetrahe-
dron and associated diffusion matrix
D for (a) m = 1 and (b) m = 2

(a) i 1 2 3 4
ξi 0 0 1 0
ηi 0 1 0 0
ζi 0 0 0 1

D =

∣∣∣∣∣∣∣∣∣

1/2 −1/6 −1/6 −1/6

−1/6 1/6 0 0

−1/6 0 1/6 0

−1/6 0 0 1/6

∣∣∣∣∣∣∣∣∣

(b) i 1 2 3 4 5 6 7 8 9 10

ξi 0 0 0 1/2 1/2 1 0 0 1/2 0
ηi 0 1/2 1 0 1/2 0 0 0 0 1/2
ζi 0 0 0 0 0 0 1/2 1 1/2 1/2

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3/10 −1/5 1/30 −1/5 1/15 1/30 −1/5 1/30 1/15 1/15

−1/5 4/5 −2/15 2/15 −4/15 1/30 2/15 1/30 −4/15 −4/15

1/30 −2/15 1/10 1/30 −1/30 0 1/30 0 0 −1/30

−1/5 2/15 1/30 4/5 −4/15 −2/15 2/15 1/30 −4/15 −4/15

1/15 −4/15 −1/30 −4/15 8/15 −1/30 −4/15 0 2/15 2/15

1/30 1/30 0 −2/15 −1/30 1/10 1/30 0 −1/30 0

−1/5 2/15 1/30 2/15 −4/15 1/30 4/5 −2/15 −4/15 −4/15

1/30 1/30 0 1/30 0 0 −2/15 1/10 −1/30 −1/30

1/15 −4/15 0 −4/15 2/15 −1/30 −4/15 −1/30 8/15 2/15

1/15 −4/15 −1/30 −4/15 2/15 0 −4/15 −1/30 2/15 8/15

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
5. Discussion

We have presented a node construction for interpolating a function over a tetrahedron based on the zeros
of the Lobatto polynomials. Our primary concern has been to devise a relatively simple scheme that is
straightforward to generate and does not compromise the interpolation accuracy. Previous high-accuracy
schemes demand a fair amount of effort to construct the node positions (e.g. Chen & Babuška, 1996;
Hesthaven & Teng, 2000).
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In developing the new distribution, we have worked in two stages. Firstly, we computed a set of
optimized interior nodes subject to the Lobatto triangle (LTR) distribution over each face (Blyth &
Pozrikidis 2005), by maximizing the magnitude of the determinant of the VDM. Secondly, we devised a
simple formula for the interior nodes as an extension of the LTR distribution. The resulting 3D distribu-
tion is coined the LTT. Lebesgue constants for the LTT are superior to those of the VDM set computed
by Chen & Babuška (1996), and compare favourably with those of the L2 set computed by Chen &
Babuška (1996) and with the electrostatics set computed by Hesthaven & Teng (2000). The accuracy of
the LTT was confirmed by computing the infinity norm of the interpolation error for sample functions.
As an added benefit, the condition number of the mass matrix for the LTT was shown to be superior to
that for the uniform grid and comparable to that of other optimal grids. In summary, the straightforward
construction of the LTT makes it an attractive choice in 3D spectral-element implementations such as
those arising in elastodynamics and hydrodynamics.
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